BRISBANE NOCTURNE - An algorithmic composition

using SoftStep.

Warren Burt

Freelance composer.

PO Box 2154

St. Kilda West, Vic. 3182
waburt@melbourne.dialix.com.au

Abstract

This paper describes the structures used in
Brisbane Nocturne, a real-time interactive
composition made using John Dunn’s
“Softstep” algorithmic Windows software.
I have been involved in the design of
Softstep, first as a beta tester, then more
recently as a consultant and module
designer. The piece, made initially as a
demonstration of some of the algorithmic
functions of the software, quickly assumed a
life of its own, and became music as well as
a demonstration of various structures. The
paper describes the functioning of the
following Softstep modules: Ball, Rhythm
Generator, Bio-Sequencer, Probability
Generator, Fractal Generator, Table Write,
Page Sequencer, Corruption, Delay, Chaos
Generator, Image, and Number Generator,
all of which are used to generate aspects of
the piece. Aspects of some of these
modules (Probability and parts of Chaos
Generator) have been designed by me,
although the bulk of the work on the
program (99%-+) is by John Dunn. The
functioning of each of these modules will be
demonstrated with examples from the piece.
The result of combining all these structures
is a composition with, hopefully, great
subtlety, and this kind of subtlety is
proposed as one of many possible ways
forward for algorithmic composition.

Brisbane Nocturne Overview

In mid 1999, I became a beta tester for John
Dunn, while he was developing SoftStep, an
algorithmic sequencer based MIDI
controller for the Windows environment. [

had been using his earlier DOS based
Kinetic Music Machine for many years, and
was delighted that he was finally porting
that over to Windows. My involvement as a
beta tester quickly escalated to that of a
consultant as I began plying him with
suggestions, which he responded favourably
to. Finally, I began designing and
suggesting a few modules for the program,
and eventually, many of my compositional
dreams of the past 20 years became reality,
thanks to John’s programming skill, hard
work, and musical intuition. [am now very
excited by all the possibilities made
available in SoftStep. It has a unique set of
possibilities not found in any other program
for any other platform.

Brisbane Nocturne is a piece made specially
for this conference and this paper. It uses
John Dunn’s Softstep to control the
synthesis engine in Martin Fay’s Vaz
Modular sound synthesis software. The
piece is performed on a Pentium II
Windows 98 laptop running both programs
simultaneously, which are linked by Hubi’s
Midi loopback driver. Originally, the piece
started off just as a series of demonstrations
of various algorithmic function modules in
Softstep. However, somewhere along the
line, it also became a piece of music which
pleases me greatly. Perhaps this is because
of the way simple things combine to make a
complex whole. I remember back in the
1970s, Dary John Mizelle, surely one of the
most important and yet mysteriously
underrated complexist composers around,
said to me that he liked to pile structure on
top of structure until chaos resulted. I think

ACMC2000 Page 18

that is what might be going on in this piece,
and that, in addition to the pleasant FM
timbres, may be why I find the piece so
attractive.

The piece, in 13-tone equal temperament,
consists of three strands of music. I like the
way the bluesy, “compressed” intervals of
13-tone tuning combine with the FM
timbres used in this piece. Two of the
musical strands are timbrally similar, while
one is both registrally and timbrally
different. The first strand is a two voice
canon, in which the leading voice consists
of a low melody and a high melody, each
produced by a different algorithmic process.
These two melodies are switched between
randomly, making a composite melody
which behaves differently in the high and
low registers. This composite melody is
then played canonically by two voices, the
second voice being delayed by 61 clock
ticks (each clock tick is equivalent to a
demi-semi-quaver here) and is transposed
up by seven 13-tone semitones.

The second strand is structurally similar to
the first, but uses different algorithms. That
is, it consists of a low melody and a high
melody which are switched between to
make a registrally varying composite
melody. Here, however, different
algorithms than were used in the first strand
produce the low and high source-melodies,
and the two source-melodies are switched
between in such a way that a gradual
transformation from one to the other takes
place. This composite melody is then also
played canorically by two voices, but here
the second voice is delayed by 53 clock
ticks, and is transposed up by five 13-tone
semitones.

Additionally, the timbres of the two FM
strands are slightly different. The first
strand is made by having the modulating
oscillator (a triangle wave) two 12-tone
semitones higher than the carrier (also a
triangle wave), while the second strand has

the modulating oscillator two 12-tone
semitones lower than the carrier. In the
second strand, both oscillators are triangle
waves as well. Finally these two voices are
processed through resonant filters, panners,
and amplifiers, all controlled by low
frequency sine-wave functions, so that the
timbre, spatial position and amplitude of
each voice slowly and continuously change.

The third strand uses an additive synthesis
tone made with Nicholas Fournel’s Virtual
Waves software. This is controlled by an
algorithm called the Thue-Morse sequence,
which in this case, produces arpeggiated
melodies with self-similar properties. This
voice is played in a high register, and is only
played occasionally in the piece. Its
function is to act as a contrast to the more
continuous sounding of the first two strands.

Strand 1

SoftStep has a number of different rhythm
generators, and this piece uses three of
them. The first strand is controlled by a
cute little generator called a ball. In this, a
“ball” bounces around a frictionless four
sided space, its speed controlled by x and y
directional inputs. Each time the ball
touches one side of the space (the space may
be sized to any rectangular dimensions
desired), a pulse is given off. Further,
contact with each side of the space
generates a unique pulse, which can be
extracted (in any combinations desired) with
a Mask Logic module, so that one ball can
control a number of different functions in
different, but related ways. (I guessifl
wanted to use techno-jargon, I’d describe
the ball as a physically modelled virtual
rhythm generator, but I prefer to think of it
as just fun.) Here, the speed of the ball is
controlled by a mouse pad controller (an x-y
axis position controller), and each aspect of
the structure of the first strand is controlled
by a different combination of side-contacts
of the ball.

ACMC2000 Page 19

As mentioned earlier, each of the first two
strands is made up of a melody consisting of
high and low register components. The first
strand’s high melody is made with the Bio-
Sequencer module. This is a module which
reads DNA or protein sequences and
outputs the result as numerical information.
It is a very complex module, but here I use it
very simply. There are twenty amino acids
which make up proteins. So if a protein
sequence is being read, values from 1 to 20
are output, as each new amino acid is read
on each new clock pulse. Here the protein
sequence of the human blue cone pigment
gene is simply read out as a series of 20
values to select between 20 possible high
pitches. (Free sources of genetic sequences
are the Swiss Protein Data Bank
www.ebi.ac.uk/textonly/swissonly.html and
the NIH GenBank www.ncbi.nlm.nih.gov/.
There will undoubtedly be a race to have the
first composition using the complete human
genome, once mapping of it is completed!)
Rhythmically, the Bio-Sequencer is
controlled by the right wall of the ball
module. The Midi Voice Out is triggered
off by a more complex combination of the
left, right and bottom walls of the ball, but
the module is set in sustain mode so that
only new pitch information will trigger off a
new pitch. This prevents repeating pitches,
something I found useful for these particular
melodies. Those wishing to know more
about the use of biological data in music are
referred to “Life Music, The Sonification of
Proteins” by John Dunn and Mary Anne
Clark

http://geneticmusic.com.

(Demonstrate Example 1, the Ball and the
Bio-Sequencer.)

The low melody of strand one is made with
a combination of the Probability module
and the Page module. The Probability
module, one of my suggestions, allows a
user to set up any probability table they
want. That is, any of 128 elements can have
its own probability of occurrence. One

simply draws the probability curve one
wants, and the output is weighted in that
way. The module can then select, in real
time, between 128 of these curves that are
preset by the user, or, using the Table-Write
module, any of these 128 curves may be
reset in real time. The Page module is a
sequencer module, where a preset sequence
(drawn by the user in the “Fill” utility
module), is accessed either sequentially or
randomly. Again, it is possible to switch in
real-time between 128 sequences. To make
this melody, the Page module is switched
between three tables, which give the closest
possible 13-tone equivalents to an ancient
Greek Dorian diatonic mode, and the major
and minor scales. Every 47 notes the scale
that is being used changes. (Keeping the
lower component of this composite melody
within some notion of “diatonicism” is my
concession to the notion that bass lines
ought to be simpler, harmonically, than
melodic lines!) The choice of notes from
these diatonic scales is made by the
Probability module, which is using a
probability curve that is continually being
rewritten. The two modules doing the
rewriting are a Fractal generator generating
a Mira fractal to determine which step of the
probability table is to be rewritten, and a
Chaos generator set to the “Burt Shift”
algorithm to determine what value to set the
chosen step to. (The “Burt Shift” algorithm
is a shift-register-feedback circuit which is
similar to that used in my “Aardvarks IV”
hardware machine, and also similar to that
used in Greg Schiemer’s “Monophonic
Variations™.) So the resulting low
component of the melody will always have
some notes of the scale played more than
some other notes, but which notes these are
will be always changing. Suffice it to say
that the melody will NOT simply sound like
the result of equally weighted random
numbers, but will hopefully have a much
richer moment to moment structure than
that produced by a simple random
generator.

ACMC2000 Page 20

Those wanting the details of the
implementation of fractals in SoftStep are
referred to the help file, and to Robert
Greenhouse’s “The Well-Tempered
Fractal.”

(Demonstrate Example 2, the Page module
and low melody, strand 1.)

These two melodies, the low and the high,
are now switched between, using the
Corruption module. This is a module which
allows either switching between or adding
of two incoming streams of information.
The switching or adding is controlled by a
probability setting. That is, one can set
probability to, say, 25%, and then there
would be a 25% chance that for each new
event, an element from the second input
(here called “offset”) would be either
substituted for or added to the
corresponding element from the first input.
This module was suggested by an article by
Laurie Spiegel, called “An Information
Theory Based Compositional Model”.

In this piece, the two melodies are put into
the two inputs of the Corruption module.
Then, any top-side contact on the ball
module generates a trigger, which selects a
different random number between 1 and
100. (This is a simple equally weighted
random number generator. (Okay, for the
pedants, it’s a pseudo-random number
generator, but it’s close enough for jazz.))
This determines the probability of choice
between the melodies until the next top-
contact of the ball, at which time this
probability changes. So the high melody is
triggered off by right-side contacts of the
ball, the low melody is triggered off by left-
and bottom-side contacts of the ball, and the
probability of switching changes with top-
side contacts of the ball. This gives us the
possibility of a wide range of selections
from, and combinations of, the various
rhythm pulses generated by the ball.

(Demonstrate Example 3, strand 1
switching.)

Finally, to thicken the plot, and add an
element of traditional structure to this, the
pitch and rhythm information for the
composite melody is also delayed by 61
clock ticks, and is applied to a Midi Key
out module (a slave to a Midi Voice out - it
allows polyphonic pitches on the same Midi
channel, but doesn’t send any pan, program,
or controller information) which is
transposed up by seven 13-tone semitones.
This gives a canon at a “somewhat-less-
than-a-fifth” interval (646 cents, to be
precise).

(Demonstrate Example 4, canonic imitation,
strand 1.)

Strand 2

The second strand is controlled by the
Rhythm generator. This is a clock which
enables 7 synchronised rhythm patterns of
up to 32 pulses to be generated and
combined in many different ways. Each of
the 7 rhythm patterns can have any
combination of off and on pulses and can be
of any length up to 32 pulses. Using the
Mask Logic modules, these can be
combined in any way desired. And the
clock of the rhythm generator itself can be
controlled from any external signal, R
allowing for tempo modulations of any
desired degree of flexibility. In this piece,
the seven patterns are set to lengths of 11,
13,17, 19, 23, 29 and 31 pulses: prime
numbers that ensure maximum length
sequences resulting from the combining of
their pulses. Each element of control of the
second strand uses a different combination
of these 7 patterns.

The high melody component of the second
strand is controlled by a Chaos generator.
This one uses the Henon attractor to
generate its values. It is triggered off by a
13 against 17 pulse pattern from the Rhythm

ACMC2000 Page 21

generator, and chooses 14 pitches for one
very high octave of pitches in 13-tone equal
temperament.

(Demonstrate Example 5, Rhythm
Generator and strand 2 high melody.)

The low melody is controlled by an Image
Generator module. This is a module which
can read any 128 x 128 pixel graphic
(bitmap) image and read colour values
either singly, or in combination for each
pixel. It can generate its own Mandelbrot
and Julia Dragon images internally, or
accept images from the Fractal generators,
or use an externally generated image. I was
tempted to use an image of the cartoon
character Bill the Cat for this function, but
Bill just didn’t have the pitch variation I
was looking for (ack!), so I settled on an
image I generated using the “Toy
Universes” cellular automata in James
Gleick’s classic “Chaos” program. The
pixel to be read from the Image Generator is
chosen with inputs to its x and y parameters.
These can be counters for linear readings, or
random generators for samplings of various
areas of the image. Here, I'm using two
counters, one of which is reading an
11:19:31 pulse from the Rhythm generator,
the other of which is reading a 17:23:29
pulse from the Rhythm generator. This
produces a quasi-random walk across the
image, moving generally in a downward
diagonal direction, but deviating from a
straight diagonal line according to the
combination of the pulses. The values the
image produces from this quasi-random
walk across it are then scaled so they control
a range of 16 low adjacent pitches in 13-
tone equal temperament.

(Demonstrate Example 6, low melody
produced with Image Generator, strand 2.)

As in strand 1, these two components are
put into a Corruption module, and a
composite melody is then produced by
switching between them. A counter

(controlled by a 17:23:29 pulse from the
Rhythm Generator) simply counts from 0 to
127. This count is put into the probability
control on the Corruption generator. Low
numbers from the count mean there will be
a greater probability of the high melody
notes being chosen. The higher the count
gets, the greater will be the probability of
low melody notes being chosen. So for
each time through the count, there will be a
different transition from mostly high
melody notes to all low melody notes. Note
that the probability generator reads all
values of 100 and above as a 100 percent
probability that the second input will be
read. Therefore, this progression, using a
count from 0 to 127, is biased in favour of
the low melody notes.

(Demonstrate Example 7, switching to
produce strand 2 composite melody.)

Finally, this second strand of composite
melody is also delayed canonically, this
time by 53 clock pulses, using the Delay
modules, and the result is transposed up five
13-tone semitones, for transposition upward
of “less-than-a-perfect-fourth” (462 cents, to
be exact).

(Demonstrate Example 8, strand 2 canon.)

Strand 3

In performance the tempo of these two
voices is constantly changed. The ball is
used to control the tempo of strand 1, while
a bar control at the bottom of the screen is
used to control the tempo of strand 2. But
on top of these two, a third strand is
sometimes added. This is a high melody of
contrasting timbre (and one which doesn’t
pan) which is controlled by the Number
Generator module. This is an expanded
implementation of the Thue-Morse
sequence, a number sequence which
exhibits great self-similarity.

ACMC2000 Page 22

A good, simple explanation of the Thue-
Morse sequence can be found in Gustavo
Diaz-Jerez’ article “Fractals and Music” in
the October 1999 issue of “Electronic
Musician.” In this implementation, the
sequence can count in any base from 2 to
127, any step size can be used, and one can
begin from many different points in the
sequence. And each of these parameters can
be re-set in real time. For example, I
randomly change the step size between 1
and 2 while generating my melody. This
produces a melody with two sizes of basic
generating intervals, 13-tone “seconds” and
“thirds”. Further, the output of this
sequence is added to an offset and then fed
back into the input of the Clock (the third,
and simplest type of rhythm generator used
in this piece) which is driving the Number
Generator. This makes low notes have a
shorter duration than high notes. In
performance, the offset is changed with a
second bar control at the bottom of the
screen, changing the tempo of this Thue-
Morse melody. This is a melody of upward
arpeggios, and the pitches that begin each
new upward arpeggio themselves form an
upward arpeggio, etc. I included this
melody as a timbral foil to the first two
strands, and also to have one very clear
example in the piece of one melody that was
unambiguously produced by one clearly
heard algorithm.

(Demonstrate Example 9 - Number
Generator melody.)

Conclusion

In Brisbane Nocturne, 1 use a wide variety
of algorithms to control different parameters
of the piece. Normally, I wouldn’t do this -
my propensity is to thoroughly explore one
kind of algorithm in a piece. However, the
desire to show a number of different
functions of SoftStep at once made me
choose to structure the piece in this way.
Conceptually, the structural result should
probably be, quite simply, a mess.

- Mannheim works. Now, with our greater

However, my ears tell me it’s not. I hear
both variety and coherence in this piece - of
a sort that intrigues and satisfies me. I think
what is happening here is that the end result
of combining all these individually simple
structures is a musical object which has a lot
of subtlety to it, and this subtlety works on a
variety of levels. So, for my ears, the piece
has a satisfying structure.

However, there’s a larger issue here, which
is what I see as our increasingly complex
understanding of the worlds of chaos,
randomness and algorithmic structure. In
the early aleatoric works of Cage and
Xenakis, for example, one algorithm is
often used. This gives the works great
structural purity, and despite their
sometimes chaotic surfaces, often a great
sense of underlying simplicity. Now, with
so many kinds of algorithms so easily
available, we can quite freely combine them
into structures which will possess an
underlying sense of structural intricacy.
(Whether the resulting music will be any
better or not is up for grabs, I’ll admit, and
is probably irrelevant to the point I want to
consider here.) In this progression I see an
analogy (a fairly shoddy analogy, its true,
but....) to what happened to musical
structure in the mid-18th century. In the
first works of the Mannheim school, the
contrapuntal complexities of the Baroque
were cast aside in favour of simpler
homophonic structures. By the middle-late
decades of the century, in the works of such
composers as

C. P. E. Bach, contrapuntal thinking began
to work its way back into the music, and
structures of greater complexity were made,
resulting finally in the structures of the late-
Classical music of the 1780s and ‘90s. In
my view, both the early works of Cage and
Xenakis, and the earliest of minimalist
works also were made in this same “paring-
away” manner. These works, for this
analogy, are the equivalent of the early

understanding of how probability works,

ACMC2000 Page 23

and of the nature of a plethora of different
deterministic and non-deterministic
structures, we are perhaps on the verge of
creating works which will be the structural
analogies to the middle period works of C.
P. E. Bach. Producing works with these
tools that could be considered analogs to the
complex late-Classical works of the 1780s
and beyond is a task that could provide
some fun for the next few years.

Thanks

A huge thank you to John Dunn for his
inspiration and effort in developing
SoftStep. Also immense thanks to the
Music Fund of the Australia Council for
their 1998-2000 Composers’ Fellowship,
during which time I worked on this
software, this piece, and this paper.

References

Burt, Warren. 1975. “Aardvarks IV - A
Real-Time Electronic Music
Performance Machine.” Unpublished
Masters Thesis, University of California,
San Diego.

Diaz-Jerez, Gustavo. 1999. “Fractals and
Music.” Electronic Musician
October:108-113.

Dunn, John. 1999-2000. “SoftStep” Help
Files. http://geneticmusic.com

Dunn, John and Clark, Mary Anne. 1997.
“Life Music: The Sonification of
Proteins” now included in “SoftStep”
help files, ibid.
http://mitpress.mit.edu/e-journals/
Leonardo/isast/articles/lifemusic.html

Gleick, James and Rucker, Rudy. 1991.
“Chaos - The Software” Autodesk, Inc.

Greenhouse, Robert. 1995. “The Well
Tempered Fractal” User Manual.

Schiemer, Greg. 1989. “Monophonic
Variations.” NMA 6. NMA Publications,
Melbourne.

Spiegel, Laurie. 1998. “An Information

Theory Based Compositional Model.”

Leonardo Music Journal 7(January).

ACMC2000 Page 24

